

HETEROCYCLIC ANALOGUES OF 2-AMINOTETRALINS WITH HIGH AFFINITY AND SELECTIVITY FOR THE DOPAMINE D₃ RECEPTOR

Kim Y. Avenell, Izzy Boyfield, Michael S. Hadley, Christopher N. Johnson*,
David J. Nash, Graham J. Riley, and Geoffrey Stemp

SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex,
CM19 5AW, UK.

Received 25 May 1999; accepted 13 August 1999

Abstract: A novel series of 5,6,7,8-tetrahydroquinazolines, 4,5,6,7-tetrahydroindazoles and 4,5,6,7-tetrahydrobenzothiazoles has been prepared, having high affinity and selectivity for the dopamine D_3 receptor. The 4-methoxy-5,6,7,8-tetrahydroquinazoline **6i** and 2-amino-4,5,6,7-tetrahydrobenzothiazole **8** proved to be agonists with among the highest D_3 receptor affinities and selectivities reported to date. © 1999 Elsevier Science Ltd. All rights reserved.

All clinically effective antipsychotic agents share the property of dopamine D_2 and D_3 receptor antagonism. At clinical doses these drugs occupy D_3 as well as D_2 receptors and their antipsychotic effects could therefore be mediated *via* D_2 and/or D_3 receptors. Blockade of D_2 receptors in the striatum leads to serious extrapyramidal side-effects, which result in poor patient compliance and consequently poor control of the disease. Dopamine D_3 receptors are preferentially located in limbic brain regions, such as the nucleus accumbens, where dopamine receptor blockade has been associated with antipsychotic activity. A selective dopamine D_3 receptor antagonist therefore offers the potential for an effective antipsychotic therapy, free of the serious side-effects of currently available drugs. As an aid to the discovery of such a selective antagonist, there is a need for a selective dopamine D_3 receptor agonist as a pharmacological tool for the further characterisation of the D_3 receptor and its physiological role. In this regard, the Parke-Davis dopamine D_3 agonist PD1289074 reportedly has high selectivity for the D_3 over the D_2 receptor.

Recently, we described a series of agonist and antagonist 2-aminotetralins 1 with high affinity for the dopamine D_3 receptor and selectivity over the D_2 receptor.⁵ These compounds were formally derived from the known dopamine D_3 agonist 5-OH-DPAT 2.^{6,7} We reasoned that by using alternative agonists as a starting point, such as quinelorane 3,⁸ quinpirole 4,⁹ or pramipexole 5,¹⁰ whose pKi values at the dopamine D_3 receptor we determined as 9.0, 7.0 and 8.0 respectively, corresponding novel series of heterocyclic derivatives 6, 7 and 8 bearing the same 4-(4-phenylbenzoylamino)butyl side-chain would be obtained, having high affinity for the dopamine D_3 receptor. This *Letter* reports our key findings regarding the D_3 affinity and selectivity of 6,7 and 8 and describes the functional influence of the substituent R^1 in the heterocyclic ring of 6 (see **Table 1**).

E-mail: Christopher_N_Johnson@sbphrd.com; Fax: (01279)627896

0960-894X/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(99)00454-0

$$H_2N$$
 H_2N
 H_2N

Novel 2-substituted 5,6,7,8-tetrahydroquinazolines 6a - 6h (Table 1) could be prepared from common intermediate 12, which was itself readily synthesised from the previously described aldehyde 11^5 (Scheme 1). Thus, reductive amination of 9 with either methylamine or *n*-propylamine in the presence of sodium triacetoxyborohydride gave the secondary amines 10 in high yield, and a second reductive amination using 11 under similar conditions, followed by hydrolysis with aqueous hydrochloric acid, gave key intermediates 12. Condensation of 12 with *tris*-dimethylaminomethane in toluene at reflux gave the corresponding enaminoketones which could be condensed with a range of guanidines, amidines and thiouronium salts (13, $R^1 = amino$, alkyl and alkythio, respectively) in the presence of either sodium ethoxide or sodium bicarbonate as base, to give final compounds 6a - 6g in 27-74% yield. For the synthesis of unsubstituted compound 6h, the condensation step with formamidine (13, $R^1 = H$) gave only intractable materials. However 6h could be prepared by Raney nickel reduction of thioether 6c in 60% yield.

Our previous studies on 2-aminotetralins 1 had shown that hydrogen bonding capability in the aryl ring substituent R¹ was required for 1 to be an agonist.⁵ We anticipated that addition of a 4-methoxy substituent into the tetrahydroquinazoline moiety would increase the electron density around the pyrimidine nitrogens and thus enhance the H-bond accepting ability of the system, which would in turn lead to potent agonism. The 4-substituted tetrahydroquinazoline 6i (Table 1) was therefore targeted. Approaches to 6i involving carboxylation of 12 proved unsuccessful, so the strategy of Scheme 2 was adopted. Carboxylation of 9 to give 14 was effected using dimethyl carbonate in the presence of sodium hydride, and this was followed by condensation with thiourea under basic conditions to give 15, which was desulfurised with Raney nickel to give the 4-hydroxy intermediate as the potassium salt 16. Attempts to methylate 16 gave solely N-alkylated products, so conversion to the 4-methoxy 17 was accomplished by reaction with phosphorus oxychloride followed by workup with excess sodium methoxide. Reductive amination of 17 with n-propylamine using sodium triacetoxyborohydride, followed by reaction of the resulting amine with aldehyde 11, gave target 6i.

Reagents: (i) R^2NH_2 , $NaBH(OAc)_3$, $ClCH_2CH_2Cl$; (ii) **11**, $NaBH(OAc)_3$, $ClCH_2CH_2Cl$; (iii) HCl, H_2O ; (iv) $(Me_2N)_3CH$, toluene, Δ ; (v) **13**, NaOEt or $NaHCO_3$, EtOH; (vi) Raney Ni, EtOH

Scheme 2

Reagents: (i) NaH, (MeO)₂CO, benzene, Δ; (ii) KOBu', thiourea, MeOH; (iii) Raney Ni, 20 M aqueous ammonia, Δ; (iv) POCl₃, then excess NaOMe, MeOH; (v) H₂SO₄, H₂O; (vi) PrNH₂, NaBH(OAc)₃, ClCH₂CH₂Cl; (vii) 11, NaBH(OAc)₃, ClCH₂CH₂Cl.

Compounds 6a - 6i were evaluated using displacement of ¹²⁵I-iodosulpride from human cloned D₃ and D₂ receptors, expressed in CHO cells, and results (together with those for PD128907) are shown in **Table 1**. The dopamine D₃ receptor has been shown to be weakly coupled to adenylate cyclase in CHO cells. ¹¹ Functional activity of the compounds was therefore determined *in vitro* using microphysiometry. ¹²

The initial compounds prepared in this series, 6a and 6b, showed high D_3 affinity and selectivity over D_2 . Our previous work with 2-aminotetralins 1^5 had demonstrated the beneficial effect on D_3 affinity and selectivity of an N-propyl compared to an N-methyl substituent, and the same effect operates in this new series of compounds although the selectivity difference between 6a and 6b is less than for the corresponding 2-aminotetralins. Both

6a and 6b displayed agonist activity, presumably as a result of activation of the dopamine D₃ receptor by the 2-amino group via hydrogen bond donation to a serine residue on trans-membrane helix 5.6,13 In this respect the 2-amino group can be considered to function as a mimic of a phenolic hydroxyl in the aminotetralins. Removal of this hydrogen bonding potential, as in 6c, 6e and 6g, switched the functional activity to antagonism in line with previous findings with 2-aminotetralins, albeit with significant cost in terms of D₃ receptor affinity and selectivity against the D₂ receptor. The 2-methylamino analogue 6d retained agonist activity, although with reduced D₃ receptor affinity relative to 6b. Removal of the substituent at C-2 altogether, as in 6h, caused a significant further loss in D₃ affinity and selectivity relative to 6c, 6e and 6g, suggesting the presence in the D₃ receptor of a lipophilic pocket capable of accommodating a methylthio, dimethylamino or t-butyl group. This implies that substituents at C-2 having hydrogen bonding capability are binding in a different area of the receptor from that accessed by C-2 substituents without hydrogen bonding capability. These observations are suppported by molecular modelling studies, involving the docking of 6b and 6c into dopamine D₃ receptor models.¹³ The loss of affinity with 6h is particularly dramatic when seen in the context of the 2-methyl analogue 6f. However, the agonism observed with 6f is interesting in the light of the antagonism found for 6c, 6e and 6g. A possible explanation for these observations is that in the case of 6f, one or other pyrimidine nitrogen can interact with a serine on helix 5 as a hydrogen bond acceptor, and this interaction is prevented on steric grounds in the case of 6c, 6e and 6g. Alternatively, 6f may adopt a different binding mode in the D₃ receptor relative to that of 6c, 6e and 6g.

Table 1. Affinities of Novel Heterocyclic Analogues of 2-Aminotetralins at Dopamine D₃ and D₂ Receptors

Compound	R ¹	R ²	$\mathbf{D_3}^b$	$\mathbf{D_2}^b$	Selectivity ^c	D ₃ Function ^d
6a	2-NH ₂	Me	8.0	5.8	150	Agonist
6b	$2-NH_2$	Pr	9.1	6.8	200	Agonist
6с	2-SMe	Pr	7.8	5.9	80	Antagonist
6d	2-NHMe	Pr	7.8	5.6	160	Agonist
бе	$2-NMe_2$	Pr	7.6	5.8	70	Antagonist
6f	2-Me	Pr	8.1	5.6	310	Agonist
6g	2- ^t Bu	Pr	7.9	5.8	110	Antagonist
6h	Н	Pr	6.9	5.9	10	NT
6i	4-OMe	Pr	8.5	5.8	490	Agonist
PD128907	<u>-</u>		7.6	5.6	100	NT

^aAll new compounds gave satisfactory analytical and/or mass spectral data. ¹⁴ ^bAffinities are pKi values. All values represent the mean of at least 2 experiments. ^cSelectivity ratio is defined as the antilogarithm of the difference between D_3 and D_2 pKi values. ^dMicrophysiometer. ¹² NT = not tested.

The 4-methoxy analogue 6i showed very high D_3 affinity (pKi 8.5) and selectivity (490 fold) despite lacking a substituent at C-2. In agreement with our hypothesis that addition of a 4-methoxy substituent would enhance the hydrogen bond accepting ability of the pyrimidine nitrogens, 6i is an agonist. The postulated hydrogen bond

interaction with the serine residue on helix 5 may involve either of the pyrimidine nitrogens, or the 4-methoxy substituent may act as a hydrogen bond acceptor in its own right.

The quinpirole- and pramipexole-derived analogues, 7 and 8 respectively, were also synthesised from the common intermediate ketone 12 (Scheme 3). Base-mediated condensation of 12 with ethyl formate followed by in situ reaction with hydrazine gave pyrazole 7, while treatment of 12 with bromine in acetic acid and subsequent reaction with thiourea gave thiazole 8.

Scheme 3

Reagents: (i) KOBu¹, THF, HCO₂Et; (ii) N₂H₄. H₂O, HCl; (iii) Br₂, HOAc; (iv) thiourea.

Data for compounds 7 and 8 are summarised in Scheme 3. In agreement with our hypothesis, both 7 and 8 were found to possess high D_3 affinity and selectivity over the D_2 receptor. Interestingly, aminothiazole 8 (D_3 pKi 9.3, selectivity 340 fold) had nearly 10 fold higher D_3 affinity and twice the selectivity against D_2 compared to pyrazole 7. The former reflects the difference in D_3 affinity of quinpirole 4 and pramipexole 5, from which 7 and 8, respectively, are formally derived. In line with the presence of hydrogen bonding capable residues in both 7 and 8, potent agonism was observed in each case.

In conclusion, using the selective D₃ agonists quinelorane, quinpirole and pramipexole as agonist starting points, in conjunction with a 4-(4-phenylbenzoylamino)butyl side-chain, a series of agonists and antagonists has been obtained with high affinity and selectivity for the dopamine D₃ receptor. In particular, the agonists **6b**, **6i** and **8** show improved selectivity compared with the related series of 2-aminotetralins previously reported,⁵ together with 10 - 50 fold higher D₃ affinity than that determined by us for PD128907 (pKi 7.6), and may prove to be useful tools for further characterising the dopamine D₃ receptor and its physiological role.

References and Notes

- 1. Sokoloff, P.; Giros, B.; Martres, M-P.; Bouthenet, M-L.; Schwartz, J-C. Nature. 1990, 347, 146-151.
- 2. Schwartz, J-C.; Levesque, D.; Martres, M-P.; Sokoloff, P. Clin. Neuropharmacol. 1993, 16, 295-314.
- 3. Shafer, R. A.; Levant, B. Psychopharmacology 1998, 135, 1-16.
- 4. Dewald, H. A.; Heffner, T. G.; Jaen, J. C.; Lustgarten, D. M.; McPhail, A. T.; Meltzer, L. T.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1990, 33, 445-450.

- 5. Boyfield, I.; Coldwell, M. C.; Hadley, M. S.; Johnson, C. N.; Riley, G. J.; Scott, E. E.; Stacey, R.; Stemp, G. and Thewlis K. M. Bioorg. Med. Chem. Lett. 1997, 7, 1995-1998.
- 6. Malmberg, A.; Nordvall, G.; Johansson, A. M.; Mohell, N. and Hacksell, U. Mol. Pharmacol. 1994, 46, 299-312.
- 7. For a recent report on the affinity for dopamine receptor subtypes of some simple alkyl and arylalkyl derivatives see van Vliet, L. A; Tepper, P. G.; Dijkstra, D.; Damsma, G.; Wikstrom, H.; Pugsley, T. A.; Akunne, H. C.; Heffner, T. G.; Glase, S. A.; Wise, L. A. J. Med. Chem. 1996, 39, 4233-4237.
- (a) Gackenheimer, S. L.; Schaus, J. M. and Gehlert, D. R. J. Pharmacol. Exp. Ther. 1995, 274, 1558-1565.
 (b) Boyfield, I.; Winn, F. and Coldwell, M. Biochem. Soc. Trans. 1996, 24, 57S.
- Bach, N. J.; Kornfeld, E. C.; Jones, N. D.; Chaney, M. O.; Dorman, D. E.; Paschal, J. W.; Clemens, J. A. and Smalstig, E. B. J. Med. Chem. 1980, 23, 481-491.
- 10. Kreiss, D. S.; Bergstrom, D. A.; Gonazelez, A. M.; Huang, K.-X.; Sibley, D. R. and Walters, J. R. Eur. J. Pharmacol. 1995, 277, 209-214.
- 11. Sokoloff, P.; Andrieux, M.; Besancon, R.; Pilon, C.; Martres, M-P.; Giros, B. and Schwartz, J-C. Eur. J. Pharmacol. Mol. Pharmacol. Section 1992, 225, 331-337.
- For details of the microphysiometer method see Boyfield, I.; Brown, T. H.; Coldwell, M. C.; Cooper, D. G.;
 Hadley, M. S.; Hagan, J. J.; Healy, M. A.; Johns, A. J.; King, R. J.; Middlemiss, D. N.; Nash, D. J.; Riley, G. J.; Scott, E. E.; Smith, S. A. and Stemp, G. J. Med. Chem. 1996, 39, 1946-1948.
- 13. Blaney, F. E., unpublished results.
- 14. ¹H NMR spectra were recorded at 250 MHz in CDCl₃ as solvent. Compound **6b**, ¹H: δ 0.88 (t, J = 7 Hz, 3H), 1.36 1.77 (m, 7H), 2.04 (m, 1H), 2.48 (dd, J = 8,7 Hz, 2H), 2.57 (t, J = 7 Hz, 2H), 2.49 3.00 (m, 5H), 3.50 (m, 2H), 4.88 (br s, 2H), 6.45 (m, 1H), 7.33 7.52 (m, 3H), 7.62 (m, 4H), 7.83 (d, J = 9 Hz, 2H), 7.99 (s, 1H). Compound **6i**, mpt 136-140 °C (.HCl salt); ¹H: δ 0.89 (t, J = 7 Hz, 3H), 1.36 1.80 (m, 7H), 2.08 (m, 1H), 2.42 (dd, J = 18,10 Hz, 1H), 2.50 (m, 2H), 2.59 (t, J = 7 Hz, 2H), 2.64 3.07 (m, 4H), 3.50 (m, 2H), 3.97 (s, 3H), 6.54 (m, 1H), 7.32 7.53 (m, 3H), 7.63 (m, 4H), 7.85 (d, J = 9 Hz, 2H), 8.54 (s, 1H) (free base). Compound **7**, mpt 121 125 °C (oxalate salt); ¹H: δ 0.88 (t, J = 7 Hz, 3H), 1.34 1.71 (m, 7H), 2.02 (m, 1H), 2.32 3.06 (m, 9H), 3.50 (m, 2H), 5.50 7.20 (br s, 1H), 6.61 (m, 1H), 7.27 (s, 1H), 7.32 7.53 (m, 3H), 7.63 (m, 4H), 7.73 (d, J = 9 Hz, 2H) (free base). Compound **8**, mpt 130 134 °C (oxalate salt), ¹H: δ 0.87 (t, J = 7 Hz, 3H), 1.35 1.83 (m, 7H), 1.97 (m, 1H), 2.30 2.77 (m, 8H), 3.05 (m, 1H), 3.49 (m, 2H), 4.89 (br s, 2H), 6.60 (m, 1H), 7.32 7.52 (m, 3H), 7.62 (m, 4H), 7.85 (d, J = 9 Hz, 2H) (free base).